POLAR COORDINATES: Seeking a Distance and an Angle

Buy Now at New England Laser \& Transit Click to Purchase
It is convenient at times to locate points on a jobsite by turning a certain angle along a known line and measuring a distance from the instrument to the desired point. The example below is used in the explanation of Rectangular Coordinates, as used in Total Station layout. Point 1 is 40^{\prime} along one axis and then offset 20^{\prime} at 90°. Using a Transit and tape measure (or the stadia feature in a Transit), Point 1 can be located by turning an angle of 26.6° and measuring out 44.72'. For those fluent with trigonometry, a tangent calculation and Pythagorean Theorem exercise will obtain the desired angle and distance. For the rest of us, an inexpensive Scientific Calculator will solve the problem nicely. In selecting a Calculator, be sure the instrument converts Rectangular \rightarrow Polar Coordinates and also Decimal Degrees \rightarrow DegreesMinutesSeconds.

Various calculators will have slightly different sequences to obtain Polar Coordinates (i.e. angle \& distance). Having access to a Texas Instrument TI-30x, the key strokes are as follows

Rectangular to Polar

2nard $[\mathrm{R}-\mathrm{P}]$ converts rectangular coordinates (x, y) to polar coordinates (r, θ).

Convert rectangular coordinates (40,20)to polar.

$40[$ 2nd $[x \cdot y] 20$	20
	deGr 44.721359
[200] [x:v] disisay θ]	deg 26.565051

With 26.56505118 displayed as a Decimal Degree, by choosing $\mathbf{2}^{\text {nd }}$ function and DD DMS a reading of $\mathbf{2 6}^{\circ} \mathbf{3 3} \mathbf{3 n}^{\prime} \mathbf{5 4}$ will be displayed.

To use N / E instead of X / Y, such as shown:

the results would be the following:

Rectangular to Polar

2nd [$\mathrm{R} \bullet \mathrm{P}]$ converts rectangular coordinates (x, y) to polar coordinates (r, θ).

Convert rectangular coordinates(20,40)to polar.

20 2nd $[x=y] \mathbf{4 0}$	DEG
2nd $[R \sim P]$ (display r)	DEGr
24.7213595	
2nd $[x: y]$ (display θ)	DEG $\mathbf{6 3 . 4 3 4 9 4 8 8}$

With 63.4349488 displayed as a Decimal Degree, by choosing $2^{\text {nd }}$ function and DD $>$ DMS a reading of $\mathbf{6 3}^{\circ} \mathbf{2 6} \mathbf{6 0 5}^{\prime \prime}$ will be displayed.

